
Week 10 - Monday

 What did we talk about last time?
 Sequence alignment

 A butcher goes to the market with $100
 He has to buy exactly 100 animals (for no especially good

reason)
 There are cows, geese and chicken for sale
 Cows are $15 each
 Geese are $1 each
 Chickens are $0.25 each

 He has to buy at least one of each animal and has to spend all
his money

 What does the butcher buy?

0 0 δ 2δ … (j -1)δ jδ … nδ

1 δ

2 2δ

…

i – 1 (i-1)δ

i iδ

…

m mδ

0 1 2 … j - 1 j … n

 Find the minimum cost to align:
 "machine"
 "catching"

 The cost of an insertion (or deletion) δ is 1
 The cost of replacing any letter with a different letter is 1
 The cost of "replacing" any letter with itself is 0

m a c h i n e

0 1 2 3 4 5 6 7

c 1

a 2

t 3

c 4

h 5

i 6

n 7

g 8

 A flow network is a weighted, directed graph with positive
edge weights
 Think of the weights as capacities, representing the maximum units

that can flow across an edge
 It has a source s (where everything comes from)
 And a sink t (where everything goes to)

 Some books refer to this kind of flow network specifically as
an st-flow network

 The definition of s-t flow is a function f(e) that maps a non-
negative real number to each edge e meeting the following
conditions:
 Capacity condition: No edge has more flow mapped to it than its

capacity c(e), more formally 0 ≤ f(e) ≤ c(e)
 Conservation condition: Except for s and t, the flow coming into a

node v is the same as the flow going out
 These conditions are intuitive: You can't pump more through a

pipe than its capacity and material doesn't accumulate at a
pipe joint

 Oil flowing from a start to a destination
 Airline crews needed to man aircraft, moving from city to city
 Goods being produced by factories and consumed by cities,

with roads that can accommodate a certain amount of traffic

 A common flow problem is to find the maximum flow
 A maximum flow is a flow such that the amount leaving s and

the amount going into t is as large as possible
 In other words:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow

going out

s t

a b

c d

e f

4

5 3

7 4

3

7

6
41

5

6

 Our algorithm involves adding augmenting paths to our
graph

 A flow augmenting path:
 Starts at s and ends at t
 May cross some edges in the direction of the edge (forward edges)
 May cross some edges in the opposite direction (backwards edges)
 Increases the flow by the minimum of the unused capacity in the

forward edges or the maximum of the flow in the backwards edges

 When all the capacity of an edge is used, we say that edge is
saturated

 After adding an augmenting path, we refer to the new graph
(with updated flows) as the residual graph

 The capacity left on edges in the residual graph is its residual
capacity

 Ford-Fulkerson is a family of algorithms for finding the
maximum flow

1. Start with zero flow on all edges
2. Find an augmenting path (increasing flow on forward edges

and decreasing flow on backwards edges)
3. If you can still find an augmenting path in the residual graph,

go back to Step 2

s t

a b

c d

e f

4

5 3

7 4

3

7

6
41

5

6

 If you don't have the rule for backwards edges, you can sometimes get
stuck with more flow left unused

 Consider the following example:

s t

u

v

20

10

30

10

20

s t

u

v

20/20

0/10

20/30

0/10

20/20

If we add an augmenting path
suvt with 20 units, we'll be stuck,

unable to add more to v

s t

u

v

20/20

10/10

10/30

10/10

20/20

By adding an augmenting path
svut with 10 units, we pull flow

off uv, splitting it back to ut

 An augmenting path is a flow
 It never increases a forward edge beyond its maximum
 It never decreases a backward edge below 0
 The input to each node (other than s and t) continues to be equal to the

output
 Each augmenting path adds additional flow because more is

coming out of s (and going into t)
 When you can't find any more augmenting paths, there's no way

to add more flow from s to t
 Since all weights are integers, we will eventually reach the

maximum flow, even if we're only increasing by 1 each time

 Our definition of Ford-Fulkerson didn't say how you pick the
augmenting path

 If the capacities are all integers, each flow value is an integer
 An augmenting path will increase the total flow by at least 1 each

time
 Thus, the algorithm could take O(|E|f), where |E| is the number of

edges in the graph and f is the maximum flow
 That could be terrible if f has a large numerical value

 Edmonds-Karp is a variation of Ford-Fulkerson that uses a
breadth-first search to find a shortest augmenting path
 It runs in O(|V||E|2)

 An cut in a graph partitions the graph into two disjoint sets
 An st-cut is a cut such that s is in one partition and t is in the

other
 Think of it as a line that slices through the edges, putting s on

one side and t on the other
 The capacity of a cut is the sum of the capacities of the edges

that the cut divides

 The smallest capacity st-cut you can make has the same
capacity as the largest possible st-flow

 Intuitively, it's like that cut is a set of edges that most
constricts the flow from s to t

s t

a b

c d

e f

4

5 3

7 4

3

7

6
41

5

6

 Bipartite matching

 Work on Homework 5
 Due Friday by midnight

 Read section 7.5

	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Back to Sequence Alignment
	Table A of OPT values
	Sequence alignment example
	Fill in the table
	Three-sentence Summary of the Maximum-Flow Problem and the Ford-Fulkerson Algorithm and Minimum Cuts
	Maximum Flow
	Flow networks
	Flow
	Applications of flow problems
	Maximum flow
	Flow network
	Augmenting path
	Terminology
	Ford-Fulkerson algorithm
	Find a max flow
	Why do we need the rule for backwards edges?
	Why does it work?
	Running time of Ford-Fulkerson
	Minimum Cuts
	Cuts
	Maxflow-mincut theorem
	Minimum st-cut
	Upcoming
	Next time…
	Reminders

